Advanced Monolithic Systems

AMS303

MICROPOWER COMPARATOR, OPEN COLLECTOR OUTPUT

RoHS compliant

FEATURES

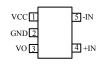
- Guaranteed 2.7V to 15V supplies
- Open Collector Output
- Industrial temperature range: -40°C to +85°C
- Low Offset Voltage <5mV
- Low Supply Current: 7μA

APPLICATIONS

- Mobile battery operated products
- Notebooks and PDA's
- Alarmed Circuits
- LED driver
- Communication Circuits

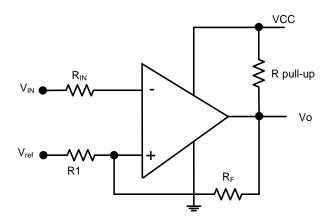
GENERAL DESCRIPTION

The AMS303 has rail-to-rail output swing and input common-mode voltage. It exhibit excellent speed-power ratio, achieving a Propagation Delay of 400ns with low supply current.


The AMS303 is available in space saving 5-Pin SOT23. The small package saves space on pc boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

ORDERING INFORMATION:

MAX.	PACKAGE TYPE	OPERATING
OFFSET	5 LEAD SOT-23	TEMP. RANGE
5mV	AMS303AM1	-40 to +85°C
15mV	AMS303M1	-40 to +85°C


PIN CONNECTIONS

5L SOT-23 (M1)

Top View

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	2.7V to 16V	Temperature Range (Note 5)	-40°C to +85°C
Differential Input Voltage	±Supply Voltage	Storage Temp. Range	-65°C to 150°C
ESD Tolerance (Note 2)	2000V	Junction Temperature (Note 5)	150°C
Infrared or Convection (20 sec)	235°C	Thermal Resistance (Note 10)	265°C

2.7V ELECTRICAL CHARACTERISTICS

Electrical Characteristics at $T_A = 25$ °C, $V^+ = 2.7$ V, $V^- = 0$ V, $V_{CM} = V_O = V + /2$ unless otherwise noted.

PARAMETER	CONDITIONS		Units		
TAKAMETEK	CONDITIONS	Min. (Note 7)	Typ. (Note 6)	Max. (Note 7)	Cints
Input Offset Voltage			0.5	5	mV
Input Offset Voltage Average Drift			2		μV/°C
Input Bias Current			11	20	nA
Input Offset Current			5	15	nA
Av	Voltage Gain		100		dB
Common Mode Rejection Ratio	$0V \le V_{CM} \le 2.7V$		75		dB
Power Supply Rejection Ratio	$2.7V \le V^+ \le 10V$		80		dB
Input Common-Mode Voltage	For CMRR ≥ 55 dB	0	-0.2		V
Range			2.7	2.75	V
Output Low	Iload= 2mA		0.2	300	mV
Supply Current			7	10	μΑ

5.0V DC ELECTRICAL CHARACTERISTICS

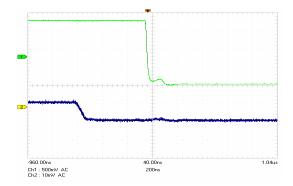
Electrical Characteristics at $T_A = 25^{\circ}\text{C}$, $V^+ = 5.0\text{V}$, $V^- = 0\text{V}$, $V_{CM} = V_O = V_{+}/2$ unless otherwise noted.

PARAMETER	CONDITIONS		Units		
111111111111111111111111111111111111111	001,21101,0	Min. (Note 7)	Typ. (Note 6)	Max. (Note 7)	C 222 45
Input Offset Voltage			0.5	5	mV
Input Offset Voltage Average Drift			2		μV/°C
Input Bias Current			11	20	nA
Input Offset Current			5	15	nA
Av	Voltage Gain		100		dB
Common Mode Rejection Ratio	$0V \le V_{CM} \le 5.0V$		75		dB
Power Supply Rejection Ratio	$5V \le V^+ \le 10V$		80		dB
Input Common-Mode Voltage	For CMRR ≥ 55 dB	0	-0.2		V
Range			2.7	2.75	V
Output Low	Iload= 2mA		0.2	300	mV
Supply Current			7	10	μA

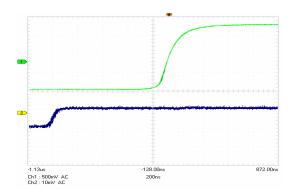
15.0V DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics at $T_A = 25^{\circ}\text{C}$, $V^+ = 15.0\text{V}$, $V^- = 0\text{V}$, $V_{CM} = V_O = V^+/2$ unless otherwise noted.

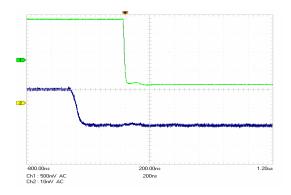
PARAMETER	CONDITIONS		Units		
TAKAMETEK	CONDITIONS	Min. (Note 7)	Typ. (Note 6)	Max. (Note 7)	Omes
Input Offset Voltage			0.5	5	mV
Input Offset Voltage Average Drift			2		μV/°C
Input Bias Current			11	20	nA
Input Offset Current			5	15	nA
Av	Voltage Gain		100		dB
Common Mode Rejection Ratio	$0V \le V_{CM} \le 5.0V$		75		dB
Power Supply Rejection Ratio	$5V \le V^+ \le 10V$		80		dB
Input Common-Mode Voltage	For CMRR ≥ 55 dB	0	-0.2		V
Range			2.7	2.75	V
Output Low	Iload= 2mA		0.2	300	mV
Supply Current			7	10	μΑ

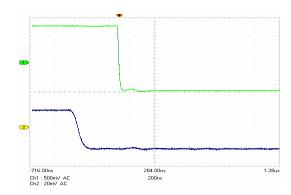

AC ELECTRICAL CHARACTERISTICS

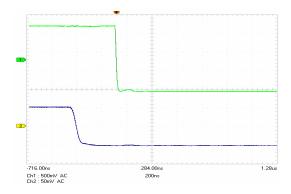
Unless otherwise specified, all limits guaranteed for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$. Boldface limits apply at the temperature extreme.


PARAMETER	CONDITIONS		AMS303			Units
			Min.	Тур.	Max.	
Rise Time	$f = 10kHz, C_L = 50 pF, (Note 9)$					
	Overdrive = 100 mV , $5\Omega \text{ Pullup}$			25		ns
Fall Time	$f = 10 \text{ kHz}$, $C_L = 50 \text{ pF}$, (Note 9) Overdrive = 100mV, 5Ω Pullup			30		ns
Propagation Delay (High to Low) (Note 11)	$\begin{array}{ll} f = 10 \text{ kHz}, C_L = 50 \text{ pF}, \\ 5 \text{ k}\Omega \text{ Pullup (Note 9)} \end{array} \qquad \begin{array}{ll} 10 \text{ mV overd} \\ 100 \text{ mV overd} \end{array}$			400 320		ns ns
Propagation Delay (Low to High) (Note 11)	$f = 10 \text{ kHz}, C_L = 50 \text{ pF},$ 10 mV overdone $5 \text{ k}\Omega$ Pullup (Note 9) 100 mV overdone 100 mV			420		ns

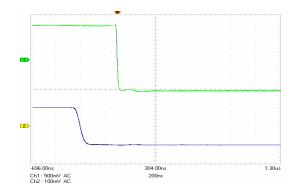
- **Note 1**: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- **Note 2**: Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.
- Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150 °C. Output currents in excess of ± 30 mA may adversely affect reliability.
- Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is.
- Note 5: $P_D = (T_{I(max)} T_A)/\theta_{IA}$ All numbers apply for packages soldered directly into a PC board.
- Note 6: Typical values represent the most likely parametric norm.
- Note 7: All limits are guaranteed by testing or statistical analysis.
- Note 8: Limiting input pin current is only necessary for input voltages which exceed the absolute maximum input voltage rating.
- Note 9: Do not short circuit the output to V+ when V+ is greater than 12V or reliability will be adversely affected.
- **Note 10**: C_L includes the probe and test jig capacitance.
- Note 11: Input offset voltage average drift is calculated by dividing the accelerated operating life V_{OS} drift by the equivalent operational time. This represents worst case input conditions and includes the first 30 days of drift.


TYPICAL PERFORMANCE CHARACTERISTICS

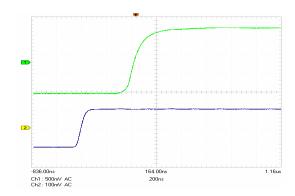



5mV input rising prop delay

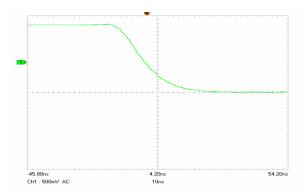
10mV input falling prop delay

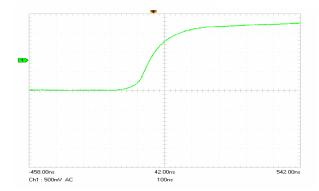


20mV input falling prop delay

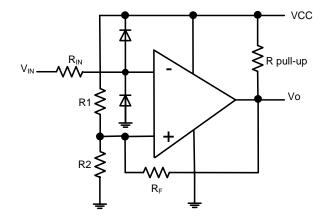


50mV input falling prop delay

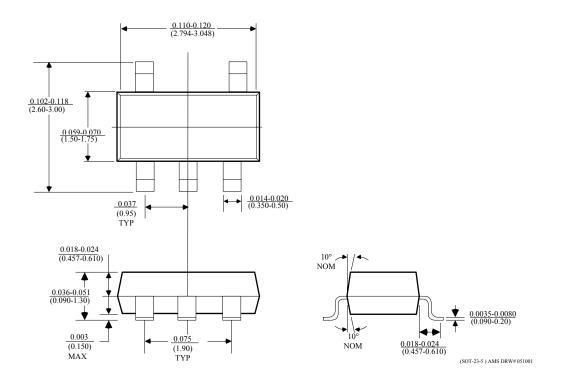

TYPICAL PERFORMANCE CHARACTERISTICS


100mV input falling prop delay

100mV input rising prop delay


Fall time 100mV overdrive 1K 10pF load

Rise time 100mV overdrive 1K 10pF load


APPLICATION INFORMATION

AMS303 is an open collector with a very low supply current of typical 7uA. The advantage of this product is the small space package and simplicity of application. It operates from as low as +2.7V to +15Vand the output pull-up resistor could be biased from higher or lower voltage then Vcc. When a large input signal is applied, an input resistor should be used to limit the input current in case of excessive input voltage. If the input voltage is pulled above the supply voltage Vcc, a set of clamp diode should be used to protect the input circuit. Since AMS303 is a high impedance input, PCB layout precautions should be taken to avoid noise pick-up from adjacent circuits or electrically noisy environments. A good practice is to keep the input traces very short and input components very close to the package. If long conductors are necessary, shielded or twisted pairs should be used.

PACKAGE DIMENSIONS inches (millimeters) unless otherwise noted.

5 LEAD SOT-23 PLASTIC PACKAGE (M1

